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Definition: A ring R is said to be a ring with zero  divisor  if  

∃  0 ≠ 𝑎, 𝑏 ∈ 𝑅 𝑠𝑢𝑐ℎ 𝑡ℎ𝑎𝑡 𝑎. 𝑏 = 0. 

Definition: A ring R is said to be ring without zero divisor  if  

   𝑎. 𝑏 =  0 𝑡ℎ𝑒𝑛 𝑒𝑖𝑡ℎ𝑒𝑟 𝑎 = 0 𝑜𝑟 𝑏 = 0, ∀ 𝑎, 𝑏 ∈ 𝑅.  

Examples: (i) The ring of Integers is an example of ring without zero divisor. 

(ii)A ring of 2x2 matrices with entries as integers is a ring without zero divisor. 

 

Definition: A ring R is said to be an Integral Domain if 

(i) R is commutative 

(ii) R is ring with unity 

(iii) R is without zero divisor. 

 

Examples:  

Z, Q are examples of Integral domain. 



 

Definition: A ring R is said to be a Field if 

(i) R is commutative 

(ii) R is ring with unity 

(iii) Ebach non-zero element of R possesses multiplicative inverse. 

 

Examples: R(the ring of real numbers), Q (the ring of rational numbers) and C (the set 

of complex numbers) are examples of field. 

Example: The set 𝐺 = { 𝑎 + 𝑖𝑏 ∶  𝑎, 𝑏 ∈ 𝑍} of Gaussian integers forms a commutative 

ring with unity(1+i0) under addition and multiplication of complex numbers. 

 Is it a field? 

Solu: G is not field. If a +ib be any non-zero element of G then its multiplicative inverse 

is 
1

𝑎+𝑖𝑏
=  

1

𝑎+𝑖𝑏
×

𝑎−𝑖𝑏

𝑎−𝑖𝑏
=  

𝑎−𝑖𝑏

𝑎2+𝑏2 
=  

𝑎

𝑎2+𝑏2 + 𝑖
(−𝑏)

𝑎2+𝑏2  ∉ 𝐺  since 
𝑎

𝑎2+ 𝑏2 ,
−𝑏

𝑎2+ 𝑏2 are not 

integers. Hence, G is not a field. 

 



Theorem: Prove that every field is an Integral domain. Does the converse true? 

Proof: Let F be any field. By definition of field, F is commutative ring with unity. 

Therefore, in order to show F is an integral domain, it is enough that F has no zero 

divisors. 

 Suppose 𝑎, 𝑏 ∈ 𝐹 𝑠𝑢𝑐ℎ 𝑡ℎ𝑎𝑡  𝑎 ≠ 0, 𝑎. 𝑏 = 0 

Again, 𝑎 ≠ 0 ⇒  𝑎−1 𝑒𝑥𝑖𝑠𝑡𝑠. 

Therefore, 𝑎. 𝑏 = 0  

⇒  𝑎−1(𝑎. 𝑏) =  𝑎−1. 0 ⟹ (𝑎−1𝑎)𝑏 = 0 ⇒ (1)𝑏 = 0. 

Hence, 𝑎 ≠ 0, 𝑎. 𝑏 = 0 ⇒ 𝑏 = 0. 

On the other hand,  𝑠𝑢𝑝𝑝𝑜𝑠𝑒 𝑏 ≠ 0, 𝑎. 𝑏 = 0. Now 𝑏 ≠ 0 ⇒  𝑏−1  𝑒𝑥𝑖𝑠𝑡𝑠 . 

𝑎. 𝑏 = 0 ⇒ (𝑎. 𝑏)𝑏−1 = 0 ⇒ 𝑎. (𝑏. 𝑏−1) = 0 ⇒ 𝑎 = 0. 

Thus,   𝑎. 𝑏 = 0 ⇒ 𝑒𝑖𝑡ℎ𝑒𝑟 𝑎 = 0, 𝑜𝑟 𝑏 = 0 .  

This shows that F is without zero divisor and hence, F is an Integral domain. 



Converse is not true. The ring of integers is an integral domain but not a field since 

integers does not have multiplicative inverse. 

 

Theorem: Prove that a finite integral domain is a field. 

Proof: Let F be a finite integral domain. This implies that F is a finite commutative ring 

without zero divisor. Suppose F has n-elements, a1, a2, a3, a4, ……. an. 

 In order to show that F is a field, it is enough to show that for every element 

 0 ≠ 𝑎 ∈ 𝐹, ∃  𝑏 ∈ 𝐹 𝑠𝑢𝑐ℎ 𝑡ℎ𝑎𝑡 𝑎. 𝑏 = 1.  

 

Suppose 0 ≠ 𝑎 ∈ 𝐹;    𝑎𝑎1  , 𝑎𝑎2  , 𝑎𝑎3  … … … 𝑎𝑎𝑛  ∈ 𝐹. 

 Also, 𝑎𝑎1  , 𝑎𝑎2  , 𝑎𝑎3  … … … 𝑎𝑎𝑛  are all different elements of F. Therefore, one of the 

elements will be equal to a. Thus,  

 ∃ 𝑐 ∈ 𝐹 𝑠𝑢𝑐ℎ 𝑡ℎ𝑎𝑡  𝑎𝑐 = 𝑎 = 𝑐𝑎 

We have to show that c is the multiplicative identity of F.  



 Let 𝑦 ∈ 𝐹.  𝑇ℎ𝑒𝑛, 𝑓𝑜𝑟 𝑥 ∈  𝐹, 𝑎𝑥 = 𝑦 = 𝑥𝑎.  

Now,   cy = c(ax) = (ca)x =  ax = y. 

Hence, cy = y = yc  for all y in F. 

This shows that c is the unit element of F, denoted by 1. Now 1 ∈ 𝐹,

𝑠𝑜  𝑜𝑛𝑒 𝑜𝑓 𝑒𝑙𝑒𝑚𝑒𝑛𝑡  𝑎𝑎1  , 𝑎𝑎2  , 𝑎𝑎3  … … … 𝑎𝑎𝑛  ∈ 𝐹 will be equal to 1. 

Thus, there exists 𝑏 ∈ 𝐹 such that ab = 1 = ba, which shows that b is the multiplicative 

in verse of non-zero element of  𝑎 ∈ 𝐹.  Hence, F is a field. 

 

 

 

 

 

 



Definition: Let (R, +, .) be ring and S be a non-empty subset  S of ring R. Then S is said 

to be Subring if S under same operation of R becomes a ring, i.e.,  (S, +, . ) is a ring. 

If R is any ring then {0} and R itself are always subring of R. These are known as 

Improper (trivial) subrings of R. Other subrings if any, of R are called Proper (non-

trivial) subrings of R. 

State and prove Necessary and Sufficient Conditions for a non-empty subset of a 

Ring to be a Subring 

Statement: Let S be a non-empty subset of a ring R. Then S is a subring if and only if  

(i) 𝑖𝑓 𝑎, 𝑏 ∈ 𝑆 𝑡ℎ𝑒𝑛 𝑎 − 𝑏 ∈ 𝑆 

(𝑖𝑖)𝑖𝑓 𝑎, 𝑏 ∈ 𝑆 𝑡ℎ𝑒𝑛 𝑎𝑏 ∈ 𝑆.  

Proof: Suppose (S, +, .)  is a subring of ring (R, +, .). Since S is a group under addition, 

𝑏 ∈ 𝑆 ⇒  −𝑏 ∈ 𝑆.   Again, S is closed under addition, 

 𝑎 ∈ 𝑆, 𝑏 ∈ 𝑆 ⇒ 𝑎 ∈ 𝑆, −𝑏 ∈ 𝑆  ⇒ 𝑎 + (−𝑏) ∈ 𝑆 ⇒ 𝑎 − 𝑏 ∈ 𝑆. 

Also, S is closed under multiplication, thus 𝑖𝑓 𝑎, 𝑏 ∈ 𝑆 𝑡ℎ𝑒𝑛 𝑎𝑏 ∈ 𝑆.  

Hence, the conditions are necessary. 



Conversely, suppose S is non-empty subset of R and the conditions (i) and (ii) are 

satisfied. From (i), we have 𝑎 ∈ 𝑆, 𝑎 ∈ 𝑆 ⇒ 𝑎 − 𝑎 ∈ 𝑆 ⇒ 0 ∈ 𝑆. 

Now, since 0 ∈ 𝑆, 𝑎 ∈ 𝑆 ⇒ 0 − 𝑎 ∈ 𝑆 ⇒  −𝑎 ∈ 𝑆, using (i). 

If 𝑎, 𝑏 ∈ 𝑆 then −𝑏 ∈ 𝑆. Using (i), we have 𝑎 − (−𝑏) ∈ 𝑆 ⇒ 𝑎 + 𝑏 ∈ 𝑆. 

Given S is subset of R. Therefore, associative and commutative property must hold in S 

since they hold in R. Thus, S is an Abelian group under addition. From (ii) S is closed 

under multiplication. Associativity of multiplication and distributivity of multiplication 

over addition must hold in S since they hold in R. Hence, S is a subring of R. 

Theorem: The intersection of two subrings is a subring. 

Proof: Let S and T be two subrings of a ring R. We have to show that 𝑆 ∩ 𝑇 is also a 

subring. It is trivial that 𝑆 ∩ 𝑇 is not empty subset of R,  

since 0 ∈ 𝑆, 0 ∈ 𝑇, 𝑎𝑛𝑑 𝑆 ⊂ 𝑅, 𝑇 ⊂ 𝑅. In order to show that 𝑆 ∩ 𝑇 is a subring it is 

enough to show that (i) 𝑎 − 𝑏 ∈ 𝑆 ∩ 𝑇  (𝑖𝑖) 𝑎. 𝑏 ∈ 𝑆 ∩ 𝑇  ∀ 𝑎, 𝑏 ∈   𝑆 ∩ 𝑇. 

We have 𝑎 𝜖 𝑆 ∩ 𝑇  ⇒ a ∈ S, a ∈ T and b ∈ 𝑆 ∩ 𝑇  ⇒ b ∈ S, b ∈ T. 

Now, S and T are subrings, therefore 𝑎 ∈ 𝑆, 𝑏 ∈ 𝑆 ⇒ 𝑎 − 𝑏 ∈ 𝑆, 𝑎. 𝑏 ∈ 𝑆 



Also 𝑎 ∈ 𝑇, 𝑏 ∈ 𝑇 ⇒ 𝑎 − 𝑏 ∈ 𝑇,   𝑎. 𝑏 ∈ 𝑇.  

Thus, 𝑎 − 𝑏 ∈ 𝑆, 𝑎 − 𝑏 ∈ 𝑇 ⇒ 𝑎 − 𝑏 ∈   𝑆 ∩ 𝑇. 

Also,  𝑎. 𝑏 ∈ 𝑆, 𝑎. 𝑏 ∈ 𝑇  ⇒   𝑎. 𝑏 ∈  𝑆 ∩ 𝑇. Hence, 𝑆 ∩ 𝑇 is a subring of R. 

 

Theorem: An arbitrary intersection of subrings is a subring. 

Proof: proof follows the same steps as in previous theorem. 

 

Example: Let M be the ring of all 2x2 matrices with entries as integers. Then the set S 

of matrices [
𝑎 𝑏
0 𝑐

] is a subring of ring M of 2x2 matrices.  

Solution: Clearly, S is a subset of M.  

Let  𝐴, 𝐵 ∈ 𝑆 ⇒ 𝐴 =  [
𝑎1 𝑏1

0 𝑐1
] , 𝐵 = [

𝑎2 𝑏2

0 2
]. 

Then 𝐴 − 𝐵 =  [
𝑎1 −  𝑎2 𝑏1 − 𝑏2

0 𝑐1 − 𝑐2
] ∈ 𝑆.  



Also,   𝐴. 𝐵 = [
𝑎1𝑎2 𝑎1𝑏2 + 𝑏1𝑐2

0 𝑐1𝑐2
] ∈ 𝑆.   

Hence, S is a subring of M  

 

Ex: Give an example to show that union of two subrings is not a subring 

Solu: Consider the ring of integers (Z, +, .). Suppose S is a subring such that   

 S = {   ….., -4, -2, 0, 2, 4…..} and T is a subring such that  T = { ….-6, -3, 0, 3, 6,…}. 

Now 𝑆 ∪ 𝑇 = { … − 6, −4, −3, −2, 0, 2, 3, 4, 6, . . . . }.   

As  2, 3 ∈ 𝑆 ∪ 𝑇 𝑏𝑢𝑡 2 + 3 ∉ 𝑆 ∪ 𝑇. Thus, 𝑆 ∪ 𝑇 is not closed under addition. Hence, 

𝑆 ∪ 𝑇 is not a subring. 

 

 

 

 



Definition: A non-empty subset I of ring  (R, +, .)   is said to be an Ideal of R if  

(i) 𝐹𝑜𝑟 𝑎, 𝑏 ∈ 𝐼, ⇒ 𝑎 − 𝑏 ∈  𝐼   

(ii) For  𝑎 ∈ 𝐼, 𝑟 ∈ 𝑅, ⇒ 𝑎. 𝑟 ∈ 𝐼  

(iii)   For  𝑎 ∈ 𝐼, 𝑟 ∈ 𝑅, ⇒ 𝑟. 𝑎 ∈ 𝐼. 
 

Definition: An ideal P of ring R is said to be Prime ideal if  𝑎. 𝑏 ∈ 𝑃 ⇒ 𝑒𝑖𝑡ℎ𝑒𝑟 𝑎 ∈

𝑃 𝑜𝑟 𝑏 ∈ 𝑃. 

Definition: An ideal M of ring R is said to be Maximal Ideal if 𝑀 ≠ 𝑅, and if for any 

ideal I of R such that  

           𝑀 ⊆ 𝐼  ⊆ 𝑅, we have I = M or I = R. 

Examples:1.  Let R = Z, the ring of integers and P = pZ, where p is prime. Then P is 

prime as well as maximal ideal. 

2. Example of ring in which a prime ideal is not a maximal ideal. 

Let R = ZxZ = {(a,b) / a, b ∈ 𝑍}. Then (R, +, .) is ring.  

Let I = {(a,0): a ∈ 𝑍 }.Then I is prime ideal as 



 (a1, b1)(a2,b2) ∈ 𝐼 ⇒ (𝑎1𝑎2, 𝑏1𝑏2) ∈ 𝐼, ⇒ 𝑏1𝑏2 = 0 

⇒ 𝑒𝑖𝑡ℎ𝑒𝑟   𝑏1 = 0  𝑜𝑟 𝑏2 = 0, since Z is an integral domain. 

 ⇒ 𝑒𝑖𝑡ℎ𝑒𝑟 (𝑎1, 𝑏1) ∈ 𝐼, 𝑜𝑟 ( 𝑎2, 𝑏2)  ∈ 𝐼.   

Hence, I is a prime ideal of R but not maximal ideal since there exists 

J = {(a,2b)/ a,b  ∈ 𝑍} such that  𝐼 ⊆ 𝐽  ⊆ 𝑅. 

 

 

 

 

 

 

 


